

TASK 1: about the dodecahedron

- 1. Build the dodecahedron. Use sticks of wood (1m) and rigid connectors.
- 2. How many:
 - vertices?
 - edges?
 - faces?
- 3. Use the wool and try to connect the vertices of the dodecahedron.

Can you build a polygon? Which one?

Can you build a regular polyhedron? Which one?

TASK 2: about the cube

- 1. Build the cube. Use sticks of wood (1m) and rigid connectors.
- 2. Use the wool and try to build polygons by "slicing" the cube.

Which sort of polygon did you find?

Is it possible to find a regular hexagon?

3. Draw this polygons on your paper note.

TASK 3: about the icosahedron

- 1. Build the icosahedron. Use sticks of wood (1m) and flexible connectors.
- 2. How many:
 - vertices?
 - edges?
 - faces?
- 3. Use the wool and try to connect some vertices of the icosahedron. Can you build a rectangle ?
- 4. Build a second rectangle perpendicular to the first one. Can you repeat this construction a third time.

TASK 4: about the octahedron & tetrahedron

- 1. Build an octahedron. Use sticks of wood (50cm) and rigid connectors.
- 2. Build a tetrahedron. Use sticks of wood (1m) and rigid connectors.
- 3. Is it possible to include the octahedron inside the tetrahedron?
- 4. Build a second tetrahedron (sticks of wood 1m). Can you imagine a construction of the stella octangula with all your polyhedrons?

TASK 5: about octahedron, tetrahedron & cube

- 1. Build an octahedron. Use sticks of wood and flexible connectors.
- 2. Build a tetrahedron. Use sticks of wood and flexible connectors. You have to include the octahedron inside the tetrahedron.
- 3. Build now a cube. You have to include your last construction in this cube.